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Building upon the ideas of Gerischer et al., we have developed a cellular automaton for the growth dynamics
of nanowhiskers. We present two models for the whisker growth. The first is a simple extension of the surface
model, whereas the second includes diffusion on the rim of the whiskers. Results for one-dimensional calcu-
lations are presented and discussed, together with a comparison between the two models and with experimental
results as well.
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I. INTRODUCTION

Bridging the huge length and time-scale gap between ba-
sic atomistic processes and the formation of mesoscopic
structures which form the basis for most material-science
applications is one of the major challenges of modern scien-
tific simulation.

Deposition processes of semiconductor films and nano-
wires growth make two outstanding examples in point. In
this paper we will focus on nanowire formation, an emerging
topic of high interest for optoelectronic applications. Though
nanowires have been successfully grown by different groups
�see, e.g., �1–3�� most of the questions on growth kinetics are
still under active debate. Two items are of central interest:
surface growth processes at the atomistic scale, and second,
the evolution of the ensemble of nanowires as a cooperative
and self-assembling process. The latter involves areas of
some 100 nm—small enough for fluctuations to play an
important role.

The kinetic Monte Carlo �KMC� method is one of the
most successful simulation techniques for processes on sur-
faces �adsorption, diffusion, desorption, reactions�. Dating
back to the papers of Weinberg �4,5� this technique has been
applied to many thin film growth systems �see, e.g., �6–10��.

The basic idea behind KMC is the following: instead of
tracking the exact dynamics between states i �initial� and f
�final�, a global transition rate R�i→ f�=�Rk is specified,
where Rk is the rate of a specific process k and the sum is
running over the ensemble of all possible processes K on the
surface. Only one such process, k�K, is chosen randomly
according to its rate Rk to occur in time step �ti→f. The latter
is given by �ti→f =−ln nr /R, where 0�nr�1 is a random
number. KMC is an event-driven simulation—particles are
moved one at a time along their own trajectory and accord-
ing to their own time schedule, while others are sitting idle.

On the contrary, in lattice gas �LG� methods all particles
sit on the nodes of a regular lattice, and hop synchronously
from one site to another according to a site- and time-
dependent probability. The time step �tLG is fixed and de-
fined by a reference process. The major appeal of LG dy-
namics, besides natural parallelism, is its mathematical and
computational simplicity and efficiency. The down side is

that, unless the problem is linear �particle propagating in a
passive media� the parallel LG dynamics is not strictly
equivalent to the serial KMC dynamics, because all particles
move at the same time, so that environmental changes due to
forerunners are not taken into account. The LG results are
then to be trusted on the assumption that these environmental
changes are negligibly small. The latter limitation could be
lifted by moving to a mesoscopic �lattice Boltzmann� repre-
sentation �11,12�, whereby environmental changes can be en-
coded within a local equilibrium reflecting the statistical in-
teractions between particles. However, since this option
would neglect all-important statistical fluctuations, we shall
not pursue it any further in this work.

Whether KMC or LG is preferable strongly depends on
the specific system under investigation. The larger the sys-
tem, the smaller the time step �ti→f in KMC, because of the
increasing number of possible processes. If the probability
that more than one process happens within this time step, the
LG automaton becomes more efficient than the KMC from
the computational point of view. In addition, LG automata
can be easily parallelized, which facilitates the computation
of very large systems.

Let us now consider the typical situation in nanowhisker
growth: �i� typical flux is about 1 ML/s �one monolayer per
second�; �ii� time scale for surface hopping: �= �10−8 s; �iii�
diameters of whiskers are dwhisker=5 nm �wanted� to dwhisker
=50 nm �current stage�; �iv� distance between whiskers
about ddist=5–10�dwhisker.

For a reasonable calculation we need about nuc=10
�10 unit cells ��100 whiskers�. The number of movements
on the surface within one time step can be estimated by
nmove��ddist�dwhisker�2nuc�0.25ddist. In Fig. 1 nmove is plotted
against the diameter of the whisker for two different spacings
between the whiskers. Except for very small diameters nmove
is larger than 1, which means that a LG automaton will be
more efficient than a KMC.

Another issue is the gap in the time scale between the
atomistic processes, such as bond breaking and formation
events, which governs the formation of nanoscopic structures
�nanowhiskers�. On the other hand, the fabrication and
growth of such structures requires minutes, if not hours, so
that it is clear that a detail time tracking of the atomistic
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dynamics is ruled out on practical grounds. Accelerated
�fictitious� dynamics have to be formulated, which retain
the essential features of the real ones, without being tied
down to atomistic details requiring an unrealistic number of
time steps.

II. THE LATTICE GAS MODEL

Here we describe the one-dimensional cellular automaton,
which is based on the development of Gerisch et al. �13,14�.
At each lattice site, labeled by integer i, there is an integer
number h�i� of atoms. Adatoms are associated with the up-
permost atoms in the stack �see Fig. 2�. Overhanging is not
allowed. Hence the number of adatoms equals the number of
nonempty �h�i��0� lattice sites.

The adatom dynamics is governed by the number of dan-
gling bonds and the corresponding binding energy. Let
b0,±�i , t� be the number of free �dangling� bonds of the ada-
tom in its current position i, and the number of dangling
bonds it would see by moving one-site left or rightwards,
respectively. The dangling bonds lie in the range 1�bk�3
since an adatom is always allowed to grow on top. The basic
rule is that an adatom is encouraged to move to positions
where the number of dangling bonds is minimized, thereby
fostering the evolution towards flat surfaces.

The rate of process k=0,± is then given by

Rk =
1

�
e−Eb�bk−b0�/kT, �1�

where

� =
h

kT
eEc/kT �2�

sets the time scale for adatom hopping from one site to an-
other on a flat surface �bk=b0�. In the above, h is the Planck
constant, Ec is the corrugation energy, and k=0 means “no
move,” while k=± means “move right or left,” respectively.
The probability of event “k” is then given by

pk = rk/�1 + r− + r+� , �3�

where we have defined the reduced rates, rk=Rk /R0.
This formula shows that events such that bk�b0 suffer a

penalty over those with bk�b0. For instance, transitions
which decrease the number of dangling bonds by two units
occur on a shorter time scale �−2=�Z−2, while those which
increase it take place on a shorter time scale �+2=�Z+2,
where we have set Z�eEb/kT. All in all, there are five time
scales �Z−2 ,�Z−1 ,� ,�Z ,�Z2, for the nine possible transitions
b→b�, b, b�=1,2 ,3. Clearly, faster events are more likely to
occur and set the pace for the time-marching procedure of
KMC simulations. In order to save computer time the values
for the five time scales are tabulated once at the beginning.

Based on this rule, a single adatom on a flat surface would
experience b0=b−=b+=3, so that p0= p−= p+=1/3, corre-
sponding to a purely diffusive process with diffusivity D
= 1

3 in lattice units. As a further example, let us consider the
“hole filling” process described by the adatom A�3� in Fig. 3
filling the hole at i=4. This configuration has b0�3�=3,
b−�3�=2, b+�3�=1, hence p0�3�=1/ �1+Z+Z2�, p−�3�=Z /
�1+Z+Z2�, and p+�3�=Z2 / �1+Z+Z2�. Thus unless Eb /kT
�1, the hole-filling “move-right” event is selected with near-
unit probability p+=Z2 / �1+Z+Z2��1−1/Z−1/Z2.

It is a simple exercise to show that reciprocal “hole-
generating” moves suffer the penalty Z→1/Z, so that “no-
move” is the most-likely event.

In the present LG model, all sites are processed in parallel
using a global time step dt, while the rates of the various
processes contribute to form the fluxes which drive the evo-
lution of the surface profile.

The evolution equation for the number or height of atoms
at lattice site x= idx and time t reads as follows:

FIG. 1. Estimated average number of movements within a time
step as a function of whisker diameter.
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FIG. 2. A periodic �0=3, 4=1� three-site lattice with h�1�=2,
h�2�=4, h�3�=1. The adatom A�1� has two dangling bonds �up,
left�, A�2� has three �left, right, top�, and A�3� has only one �top�.
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FIG. 3. Configurations associated with the adatom A�3� moving
right or left, respectively.
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h�i;t + dt� = h�i;t� + ��+�i − 1;t� + �−�i + 1;t� − �−�i;t�

− �+�i;t��dt + D�i;t�dt , �4�

where x= idx is the spatial position, t=ndt is the synchronous
discrete time, and D�i ; t� is the local deposition rate. In line
with the boolean nature of the lattice gas, at each site ��i ; t�
are converted to boolean integers �	0,1
, according to the
following probabilistic rule:

0 � 	 � p0:�0 = 1, �± = 0, �5�

p0 � 	 � p0 + p−:�− = 1, �0 = �+ = 0, �6�

p0 + p− � 	 � 1:�+ = 1, �0 = �− = 0, �7�

where 	 is a random number ��0,1�. Note that the boolean
fluxes, jointly with the choice dt=�, imply that at each time
step, the site height h�i� can only change in integer units in
the range 	−2,−1,0 , +1 , +2
, thereby preserving the integer
nature of the lattice gas scheme.

The LG dynamics is more efficient than standard kinetic
Monte Carlo, because all sites are updated simultaneously in
a single time step �intrinsically parallel dynamics�. On the
other hand, once the system reaches to a configuration such
that further moves are inhibited �typically, a whisker on a flat
background, see below�, the LG dynamics still keeps pro-
cessing this configuration in vain �zero left- or rightward
fluxes� till the next drop falls in. This is a source of ineffi-
ciency which must be weighted against the benefits of the
intrinsically parallel dynamics.

The lattice Eq. �4� corresponds to a nonlinear diffusion
equation in the continuum limit dx→0, dt→0, dx2 /dt
→D0, D0 being the bare diffusion coefficient on a flat sur-
face, D0=1 in lattice units dx=dt=1. Leaving the analysis of
the continuum limit to a future work, in the sequel we focus
on the application of the LG dynamics Eq. �4� to the case of
nanowhisker growth.

III. WHISKER GROWTH—MODEL 1

A. LG dynamics

We seed Nw sites i1¯ iNw
with special rules, designed in

such a way as to foster whisker growth. The whiskers are
distributed on a regular array spaced a distance d=L /Nw lat-
tice units apart, where L=Nxdx is the spatial size of the do-
main. At each whisker site iw the outfluxes are set to zero, so
that particles can only be absorbed in the first place. Even-
tually, if the whisker grows too large, particles can be re-
emitted with probability

q± =
1

2
�1 − e−dh2/2hequil

2
�, q0 = 1 − q− − q+, �8�

where dh=max	5hequil , �h�iw�−h�iw±1��
. In the above, hequil

sets the typical height contrast beyond which whisker growth
is inhibited. More specifically, the growth of whisker gradi-
ents in excess of hequil /dx is exponentially suppressed. This
spikeness-limiting mechanism can be paralleled to physical
desorption process, although a precise mapping in this direc-
tion remains to be worked out for the future.

Note that the rule �8� completely overrides the flux rule
�5� at whisker sites. This is a desired feature of our model,
since whiskers are by definition sites where growth is
strongly favored by the underlying chemical-physical
processes.

B. Simulation results

The main aim is to assess whether, in spite of the drastic
simplification, our LG model is capable of predicting the
qualitative features of whisker growth. In particular, we shall
explore the way that whisker growth is affected by whisker
density and interspacing.

1. Simulation setup

We take dt=� and dx=w, w being the whisker width. This
means that we do not describe any space-time process at the
subwhisker scale. In particular, the specifics of the “climb-
ing” dynamics of the atoms along the whisker is entirely
hidden within the whisker rules, Eq. �8�.

Initial conditions are as follows: h�i ; t=0�=h0, plus ran-
dom fluctuations of amplitude ±1. Periodic boundary condi-
tions at x=0 and x=L are imposed.

The deposition process �“rain”� is implemented by allow-
ing one drop to fall every nrain steps on a randomly chosen
site 1� i�Nx. The quantity nrain is fixed by the deposition
rate according to

nrain =
1

NxDdt
,

where D is given in monolayers per second �ML/s�, 1 ML
corresponding to Nx drops. The main set of parameters is as
follows: lattice size Nx=128, simulation span Nt=1000nrain
�1000 deposited drops/simulation�, temperature T=1000 K,
corrugation energy Ec=1 eV, Ec /kT=11.6, bond energy Eb
=1.0 eV �case A�, Eb=0.5 eV �case B�, deposition rate D
=1000 ML/s, average initial height h0=5, inhibition height
hequil=10 000.

We study the effect of whisker density on the whisker
growth process. This is best expressed in terms of the whis-
ker spatial separation

d/w = Nx/Nw

or, equivalently, in terms of the whisker concentration

C = w/d .

We change Nw= 	1,2 ,4 ,8 ,16,32,64
 with a fixed Nx=128,
corresponding to d /w= 	128,64,32,16,8 ,4 ,2
. As a general
rule, we expect crowding to inihibit single-whisker growth.
As an overall figure of merit for whisker growth we take the
number of atoms in the whiskers, that is,

Hw�t� = �
j=1

Nw

h�j ;t� �9�

or, equivalently, the whiskering ratio, defined as the fraction
of drops in whiskers vs total number of drops:

W�t� = Hw�t�/H�t� . �10�

Due to mass conservation, the denominator is known exactly,
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H�t� � �
i=1

Nx

hi�t� = H�0� + Dt ,

where H�0� is the total number of drops at t=0. In the ab-
sence of nonlinear competition, each whisker is expected to
develop a mean height hiw

�t��h0+W�t��Dt /Nw�.

2. Whisker growth rate: Case A (Eb=1 eV)

In Fig. 4�a� we plot the time evolution of the central whis-
ker for the cases Nw=1,4 ,16,64. It is observed that h�t�
−h0 lies in the range 5–20 over 1.5�106 time steps �corre-
sponding to 1000 droplets deposited at a rate of one each
1500 time steps, a single time step corresponding to about
5 ns.� These values are well below the theoretical limit
Dt /Nw, which is 1000, 250, 62.5, 31.5, respectively. This
indicates a relatively low whiskering efficiency.

Indeed, the whiskering ratio, as reported in Fig. 4�b�, in-
dicates that even with as many as 64 whiskers �w /d=1/2,
i.e., half filling�, only about 60% of droplets fall within whis-
kers. The remaining 40% remains distributed in the intersti-
tial background. The above data show that the whiskering
ratio grows linearly with Nw up to Nw=16, indicating no

whisker competition in this range. At larger values, i.e.,
w /d�1/8, competition arises and the whiskering efficiency
drops down by a factor 2. The data are given in Table I.

3. Whisker growth rate: Case B „Eb=0.5 eV…

Next we investigate the effects of lowering the dangling
bond energy, that is Eb=0.5 eV, all other parameters staying
the same. In Fig. 5�a�, we report the growth of the central
whisker for the case Nw=1,4 ,8 ,16,64. The reduced gap be-
tween the time scales, due to the smaller dangling energy
�eEb/kT goes approximately from 9�104 to 3�102�, leads to
a less effective spatial redistribution of the spatial profile,
hence to a faster growth. In fact, with Nw
4, the whisker
height is seen to overcome the “ballistic” limit Dt /Nw, indi-
cating that, at variance with the case Eb=1 eV, the whiskers
“eat up” the interstitial background. This is confirmed by
visual inspection of the height profiles h�i�, as reported in
Fig. 6, which clearly shows whiskers standing tall over a
nearly zero background.

This indicates that the system is ready to grow faster than
permitted by the atom deposition rate D. Indeed, the whis-
kering ratio W�t� for this case is seen to go top flat �W=1�,
already with Nw
8, indicating that higher whisker concen-
trations demand higher deposition rates to grow further.
Quantitative data are reported in Table I.

C. Whisker opacity

With a deposition rate of 1000 drops per simulation, set-
ting the parameter hequil=104 is tantamount to tagging the
whisker sites as literal “black holes,” in that the probability
of escaping them is virtually zero. It is therefore of interest to
estimate the effects of lowering the value of this parameter
so as to make the whisker sites “opaque.” In Fig. 7 we report
the spatial profiles for the case Eb=0.5 eV and hequil
=1000,100, respectively. From these figures, it is clear that
lowering hequil leads to a sizeable reduction of the whisker
growth, along with a spreading of the whisker spatial distri-
bution. This is in line with expectations, and it indicates that
care has to be taken in the mapping of the microscospic
chemico-physical details of whisker growth into an effective
coarse-grained parameter such as hequil. As previously com-
mented, in the present work hequil serves as a phenomeno-

(a)

(b)

FIG. 4. Whisker height as a function of time �a� and fraction of
whisker atoms W=Hw /H �b� for the case with Eb=1.0 eV. The
numbers at the curves indicate the number of whiskers in the
calculation.

TABLE I. Whiskering ratio and efficiency for Eb=1 eV and
Eb=0.5 eV.

Nw

Eb=1.0 eV Eb=0.5 eV

W W /Nw W W /Nw

1 0.0175 0.0175 0.1828 0.1828

2 0.032 0.016 0.386 0.193

4 0.067 0.0157 0.7672 0.192

8 0.129 0.0161 0.9746 0.122

16 0.263 0.0164 0.998 0.063

32 0.388 0.0121 0.997 0.032

64 0.593 0.0092 0.975 0.016
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logical control parameter for the “spikeness” of the height
profile. On physical grounds, it could be related to the onset
of putative desorption processes, but the details of such map-
ping remain to be explored for the future.

IV. WHISKER GROWTH—MODEL 2

A. LG dynamics

In this model we treat the diffusion along the rims of the
whisker �“climbing dynamics”� explicitly with a very simple
model. We allow adatoms to diffuse on the rim �climbing up
and down�, but only in the direction where they do not have
another adatom as a neighbor. Possible movements are
marked by blue arrows in Fig. 8. Hopping on another adatom
�green arrows� is forbidden. This means that the growth of
the whisker’s diameter is suppressed, as suggested by experi-
mental evidence, according to which whiskers do not grow
in diameter but more or less in height only. Lateral growth
phenomena, such as those described by the Kardar-Parisi-
Zhang paradigm, could easily be described by introducing
nonlinear and nonconservative adatom moves, mimicking

the source term �dh /dx�2. Albeit interesting for general inter-
face growth problems, this dynamics is, however, of scanty
interest for the case of nanowhisker growth, precisely for the
reasons given above.

For the computation of the probabilities we use the same
energies �Ec and Eb� as for those on the substrate. Since we
use the same corrugation energy Ec for the diffusion on the
substrate’s surface and the rim of the whisker the time scale
is the same. Therefore the probability for staying at the same
site is one both for an adatom at the rim and on the substrate.

(a)

(b)

FIG. 5. Whisker height as a function of time �a� and fraction of
whisker atoms W=Hw /H �b� for the case with Eb=1.0eV. The num-
bers at the curves indicate the number of whiskers in the
calculation.
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FIG. 6. Spatial distribution h�i� at t=1.5�106 for Nw=1 �a�,
Nw=8 �b�, and Nw=64 �c�.
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If an adatom is sitting at the upmost site of the rim it can
enter the droplet with a probability Pdiss. This probability is
an input parameter. We will see that the growth dynamics of
the whisker is very sensitive to this parameter. We do not

allow any reverse process nor consider any process in the
droplet. Therefore once a particle enters the droplet it will be
treated as incorporated into the whisker. The whisker height
hwhisker will increase by 1/ �2rwhisker�, where rwhisker is the
radius of the whisker. Please note that the whisker height is a
real number instead of an integer number like h�i�. Of
course, this is artificial because we do not resolve the surface
structure on the top of the whisker; hwhisker is the average
height of the whisker. The last site on the rim for computa-
tions is int�hwhisker�.

In the following we describe the rules to move atoms
from substrate to the rim and vice versa. Let the whisker be
located at sites xA to xB. We consider only the left-hand rim
but the same is valid for the right-hand one. Let the height of
the substrate at site xA−1 be hheight

A . The atom at xA−1 with
height hheight

A belongs to the substrate by definition �see Fig.
9�. All adatoms on the left-hand rim have the x coordinate
xA−1. In order to clearly distinguish between adatoms on the
rim and the one on the substrate with the same x coordinate
�xA−1� we do not allow adatoms on the rim at heights
hheight

A +1 and hheight
A +2 �see Fig. 9�a��. Therefore the adatom

on the substrate at xA−1, hheight
A can move to the position

xA−1, hheight
A +3 if this site is unoccupied �see Fig. 10�b��.

Then, it becomes an adatom of the rim. Alternatively, it can
stay at xA−1, hheight

A or move to left site on the substrate.
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FIG. 7. Spatial profile with hequil=1000 �a� and hequil=100
�b�.

FIG. 8. �Color online� Dynamics on the whisker’s rim in model
2. Adatoms on the rim can move freely on the rim but they are not
allowed to hop onto another adatom. An adatom at the upmost
position on the rim can enter the droplet with a probability Pdiss.

(a)

(b)

FIG. 9. �Color online� Configuration of sites at the rim of a
whisker at its bottom. If the requirement of two empty sites is not
fulfilled after the moving step the configuration will be rearranged
�b�.
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An adatom on the rim at xA−1, hheight
A +3 can move to

xA−1, hheight
A and become an adatom on the substrate �see

Fig. 10�b�� through the flux from the gas phase. After the
moving step it might happen that there is only one free site
between the upmost occupied on the terrace adjacent to a
whisker and the first occupied site �see Fig. 9�a� and 9�b��. In
this case, the configuration is rearranged as shown in Fig.
9�b�.

We do not allow adsorption on the rim or on the substrate
at site xA−1 �and xB+1�.

B. Results

1. Comparison with model 1

First, we will compare the two models for the parameter
sets in the previous section. The main difference between the
two models is the fact that in model 1 the relative rate of
dissolution is defined by Eb. Therefore for Eb=0.5 eV not
only is the diffusion on the surface significantly enhanced
compared to the case Eb=1.0 eV but also the hopping onto
the whisker. This leads to the very high growth rate of the
whisker. Due to numerical reasons the whisker in model 2
has to be at least the width of two units. Therefore we have
to rescale the length and time. Let l1 be, l2 the lengths of the
unit cells in case 1 and 2, respectively. If l2= lrescalel1 the time
scales are related via �2= lrescale

2 �2 in order to keep the diffu-
sion constant the same. Using Eq. �2� the rescaling of the
time scale can be translated into a rescaling of the corruga-
tion energy: �Ec�2= �Ec�2+2kT ln�l�. Therefore we use now
Ec=0.8808 instead of Ec=1.0. We also have to rescale the
particle flux to the surface �Ndepos�2= �Ndepos�1 / ls. So we
change from 1000 to 2000 ML/s. One can interpret the res-
caling as a coarsening of the atomic resolution: one compu-
tational unit contains n�n atoms. We will later show the

influence of the coarsening on the dynamics of the system.
We also have to define an adequate probability for the

dissolution of a particle into the droplet. In model 1 a particle
adjacent to the whisker will have at least one missing dan-
gling bond, i.e., the bond to the whisker. Therefore we define
Pdiss=e−Eb/kT, which results in Pdiss=8.9�10−6 and Pdiss
=2.99�10−3 for Eb=1.0 eV and Eb=0.5 eV, respectively.

Figure 11 shows the temporal development of the whisker
height corresponding to Fig. 4 and Fig. 5. The behavior is
similar but for Eb=0.5 eV also some differences can be ob-
served. In model 1 the increase of the whisker height is ap-
proximately linear in time from the beginning whereas in
model 2 there is some time regime of increasing slope before
the further growth becomes linear in time. This regime is
longer the shorter the distance between the whiskers. Figures
12 and 13 show the surface profile for Eb=1.0 eV and Eb
=0.5 eV. In the latter the rate for dissolution of particles is
high enough to provoke a large flux from sides towards the
whisker, which leads to trenchlike structure around the whis-
ker. Such structures has been observed in experiments �3�
and have been taken as one hint for the assumption that most
of the material incorporated in the whisker stems from ad-
sorption on the substrate’s surface. When the distance be-

w
h
is
k
e
r

(a)

(b)

FIG. 10. �Color online� Movements at the edge terrace to whis-
ker. �a� Movement of a particle which is treated to belong to the
substrate. It can move to the first possible whisker site.

(a)

(b)

FIG. 11. �Color online� Height of left whisker as a function of
time for Eb=1.0 �a� and Eb=0.5 �b�. The numbers at the curves
indicate the number of whiskers in the calculation.
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tween the whisker is diminished all material in between is
eaten up by the whiskers. Since the total number of sites is
small the height of the whiskers is significantly different due
to statistical reasons.

2. Parameter studies
a. Variation of resolution. First, we check the behavior of

the system when the resolution is reduced. For the atomic
resolution, we consider a width of the whisker of 20 and a
distance to the next whisker of 2540 atoms. The dynamics
has been computed for a total of six coarser systems, as listed
in Table II.

We set Eb=1 and Pdiss=5�10−4. From Fig. 14 it can be
seen that in the beginning the growth speed of the whisker is
almost the same for all resolutions except for the lowest,
where the statistics is too poor. After an initial stage the
growth rate is linear until a saturation starts. The start is
earlier the higher the resolution. The same effect can be seen
more clearly in the whiskering �Fig. 14�b��, where the effi-
ciency is dropping after a certain time for the high resolu-
tions.

b. Different dissolutions. Next we check the influence of
the dissolution of the particles into the liquid droplet. The
given probability of the dissolution plays an essential role,
because once a particle hops into the droplet it can never
return and will be treated as instantaneously added to the
whisker’s top layer. We have performed calculations for vari-
ous Pdiss and T=930 K, Eb=0.5 eV. The deposition rate was
still D=1000 ML/s, and the corrugation energy Ec=1 eV.
Figure 15 presents the whisker height for different probabili-
ties. For comparison, the average and maximum heights on
substrate’s surface are shown. At Pdiss=10−5, the whisker
height is in the range of the maximum height, i.e., no whis-
ker growth can be observed. On the other extreme, for prob-
abilities higher than Pdiss=10−3, a saturation is reached and
the system is diffusion limited.

c. Growth behavior as a function of the whisker’s diam-

eter. Schubert et al. and Johansson et al. analyzed their ex-
periments in order to find a functional relation between the
length of the whisker and its radius. The main difference
between the experiments is that Schubert et al. used molecu-
lar beam epitaxy �MBE� �3� while Johansson et al. used
metal-organic compound vapor deposition �MOCVD� �2�. It
is assumed that in the MBE experiments the particles can

(a)

(b)

(c)

FIG. 12. �Color online� Spatial distribution h�i� for Nw=1 �a�,
Nw=4 �b�, and Nw=16 �c�. The run for model 2 �Eb=1.0 eV� has
been performed with the same parameters as for model 1.

(a)

(b)

(c)

FIG. 13. �Color online� Spatial distribution h�i� for Nw=1 �a�,
Nw=4 �b�, and Nw=16 �c�. The run for model 2 �Eb=0.5eV� has
been performed with the same parameters as for model 1, where the
results are shown in Fig. 6.
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adsorb on all surface parts, with about the same sticking
probability, whereas in the MOCVD the bonds of the metal-
organic compound have to be broken before the particular
atom can be incorporated. It is also assumed that this proce-
dure is enhanced at the surface of the gold droplets, so that
the solving of metallic atoms in the gold droplet is preferred
to the adsorption on the terraces or the whisker’s rim. In the
following, we will only focus on the MBE process, because
it is closer to the mechanism described by our cellular au-
tomaton model.

Schubert et al. described a constant growth rate

dhwhisker /dt �3�. In our computations, we also observed a lin-
ear behavior of the whisker height in time, except in the very
beginning. For large times, i.e., large whisker heights, we
observe a saturation effect and the growth rate becomes
lower. The MBE experiment, which Schubert et al. have per-
formed, took place at a substrate temperature of 525 °C and
Si flux of 0.05 nm/s. They found

hwhisker � dwhisker
m �11�

with m=−1 �3�. An exponent m=−1 corresponds to the ratio
of the contour of the rim to the area of the whisker’s top
surface. The behavior of the ratio with the diameter of the
whisker is the same for one and two dimensions. An expo-
nent m=−1 means that the number of atoms in a whisker at
a certain time is independent of its diameter. Values in the
range m�−1 indicate that the number of atoms in the whis-
ker grows with increasing whisker diameter, i.e., the diam-
eter growth demands a mass inflow from the outside, while
the opposite is true for m�−1.

We have performed several runs by varying both Pdiss, kT
and Eb. From a log-log-plot one can derive a relation
hwhisker�dwhisker

m for all runs �see Fig. 16�. But first we ob-
serve a significant change in the exponent around a whisker
diameter of 50 and for all data the exponent m is smaller than
−1. By plotting the number of atoms in a whisker as a func-
tion of the diameter we observe a linear increase for all runs

TABLE II. List of computations with whisker model 2 for comparison with model 1.

Ngrid 256 512 640 1024 1280 1920 2560

Pdiss 5�10−4 5�10−4 5�10−4 5�10−4 5�10−4 5�10−4 5�10−4

En 1.0 eV 1.0 eV 1.0 eV 1.0 eV 1.0 eV 1.0 eV 1.0 eV

Ec 1.396 eV 1.2768 eV 1.2384 1.1576 eV 1.1192 eV 1.0495 eV 1.0 eV

Mflux 100 ML/s 200 ML/s 250 ML/s 400 ML/s 500 ML/s 750 ML/s 1000 ML/s

Iterations 300.000 1.200.000 1.875.000 4.800.000 7.500.000 16.875.000 30.000.000

(a)

(b)

FIG. 14. �Color online� Whisker height vs time �a� and whisker-
ing vs time �b� for different spatial resolutions. The straight line �a�
represents the average layer height.
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FIG. 15. �Color online� Whisker height at time step 3 000 000
��t=4.126�10−2 s� as a function of the dissolution probability.
The solid line indicates the maximum height on the substrate.
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except for small diameters. In addition, the slope is the same
for all runs.

The data for the different runs can be represented by

hwhisker = �/�dwhisker + d0� + 
 tanh�dwhisker/d1� �12�

with d0=1, 
=52 for all runs, d1=10 in the case of higher
temperature �kT=0.1�, and in that with the low dissolution
probability �Pdiss=2�10−4�, d1=15 else �see Fig. 17�. Un-
like the power law Eq. �11�, Eq. �12� is not divergent as
dwhisker→0, and stays above zero as dwhisker→�. Both
amendments make full physical sense. In fact, � /d0�h0 and

�h� represent the whisker height in the limit d→0 and
d→�, respectively. Consequently, the finiteness of h0 indi-
cates that there would be no atoms in an infinitely thin whis-
ker �“needle” limit�, whereas the nonzero value h� means
that it would take an infinite number of atoms to fill up an
infinitely fat whisker �“pancake” limit�.

As already mentioned, after an initial state the growth of
the whisker is linear in time, until it starts to deviate due to
the long diffusion path on the rim of the whisker. A more
detailed analysis for the case with Pdiss=5�10−4 and Eb

=0.5 eV shows that the lines representing the linear growth
regime for the different whisker diameters match all at the
same time �t0=0.005 s� for hwhisker=0. Therefore the height
in the linear regime can be expressed as

hwhisker = g�dwhisker��t − t0� , �13�

where g�dwhisker� is a function of the whisker diameter and t0

reflects the delay due to the finite time for establishing a
steady-state situation of the system. We take the function g
from our previous analysis for time t=0.05 and get

hwhisker = � �t

dwhisker + d0
+ 
t tanh
dwhisker

d1
���t − t0� .

�14�

Here we have defined the generalized parameters �t=� / t1

and 
t=
 / t1, with t1=0.045 s. One can see that for large
diameters �dwhisker��t /
t� the whisker height is given by
hwhisker�
t�t− t0�. On the other hand, in the limit dwhisker

→0 the whisker height becomes hwhisker=�t /d0�t− t0�. For-
mally, �t has the dimension of a diffusion constant, whereas

t has the dimension of a velocity. Both parameters depend
on the incoming flux of particles �see Table III�. The higher
the flux the shorter is the time to reach a steady-state situa-
tion of whisker growth. This means that t0 decreases with
increasing flux �see Table III�.

Because we used periodic boundary conditions, in our
calculation there will be an influence on the growth if the

FIG. 16. �Color online� Whisker height as a function of the
whisker diameter at time 0.05 s. Filled boxes: kT=0.086 eV, Pdiss

=2�10−4 s−1, Eb=0.5; stars: kT=0.086 eV, Pdiss=5�10−4 s−1,
Eb=1.0; open circles: kT=0.086 eV, Pdiss=5�10−4 s−1, Eb=0.5;
closed circles: kT=0.086 eV, Pdiss=1�10−3 s−1, Eb=0.5; open
boxes: kT=0.100 eV, Pdiss=5�10−4 s−1, Eb=1.0. The exponents m
are the following: curves 1–3: m=−0.71; curve 4: m=−0.81; curve
5: m=−0.30; curve 6: m=−0.46.

FIG. 17. �Color online� Whisker height as a function of the
whisker diameter at �0.05 s �iteration=9 349 000 for kT=0.086
and iteration=55 366 000 for kT=0.10�. The dashed lines are ac-
cording to Eq. �12�. Filled boxes: kT=0.086 eV, Pdiss=2
�10−4 s−1, Eb=0.5, �=2500; stars: kT=0.086 eV, Pdiss=5
�10−4 s−1, Eb=0.5, �=4600; closed circles: kT=0.086 eV, Pdiss

=1�10−3 s−1, Eb=0.5, �=5700; open boxes: kT=0.100 eV, Pdiss

=5�10−4 s−1, Eb=1.0, �=6000.

TABLE III. Parameters in Eq. �14� for different fluxes of gas
particles.

flux �ML/s� �t 
t t0 �s�

10 4,200 13 0.265

40 15,600 52 0.165

100 36,500 130 0.13

200 60,000 260 0.075

500 90,000 650 0.02

750 96,000 950 0.01

1000 102,000 1200 0.005

1500 115,000 1600 0.0022
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distance between two whiskers becomes too small. For all
computations above, we had one whisker in the computa-
tional domain with periodic boundary conditions and a do-
main width of 2560 grid points. As a result, there was a
distance of 2560−dwhisker grid points between two whiskers.
For the case dwhisker=160, we increased the number of grid
points to 25 600. No differences in the growth kinetics were
observed.

Next, we present a comparison with approaches of other
authors. The growth dynamics of nanowhiskers has been
considered in the literature for two different regimes:
nucleation-mediated growth �15,16� and diffusion-induced
growth �17�. More recently also a combined approach was
derived �18�. Because our current model describes the
diffusion-induced growth we will discuss our results in the
context of the approach of Dubrovski� et al. �17�. They de-
rived an equation for the time evolution of the length of the
whisker lwhisker, where lwhisker is measured from the epitaxial
layer. Note that hwhisker, which we analyzed so far, is mea-
sured from the substrate. Dubrovski� et al. considered a ho-
mogeneous epitaxial layer without a groovelike structure
around the whiskers, which occurred in our simulations and
which also have been observed in experiments. We will dis-
cuss this question in a moment.

We only consider cases where Rc / �R��−����1, where Rc

is the critical radius at which the direct impingement prevails
over diffusion from the surface, R=dwhisker /2 is the radius of
the whisker, � accounts for desorption from the drop surface
and will be zero for all our calculations. Finally, �= �D
−Vsurf� /D is the relation between the deposition rate D and

the growth rate of the surface Vsurf. The equation for the
whisker length by Dubrovski� et al. is

lwhisker = Ldarcsinh
Rc

R
+ � − ��Dt

Ld
. �15�

Ld is the diffusion length at the rim. The analysis of our data
was carried in the regime where the growth rate of the whis-
ker was constant, i.e., the change in the whisker height was
proportional to time. In this regime, we have

lwhisker = 
Rc

R
+ 1 −

Vsurf

D
�Dt . �16�

It is difficult to compare our results with this equation, be-
cause the question arises of how to measure lwhisker in our
calculations. We can measure it from the mean average
height of the grown layer. Or we can measure it from the
height of the layer at the rims of the whisker hsr. This corre-
sponds to the definition of lwhisker in the paper �17�, because
atoms on the rim of the whisker have to overcome this length
in order to be incorporated into the liquid droplet at top.
Unfortunately, the evolution of hsr is not linear in time in the
period where the hwhisker increases linearly in t �see Fig. 18�.
On the contrary, the average layer height is increasing lin-
early in time and so we use this height as a reference for
computing lwhisker. For lwhisker=hwhisker−Vsurft we obtain from
Eq. �14�

lwhisker = �C − Vsurf�t̃ , �17�

where

0
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FIG. 18. �Color online� Height of the layer at the rims of the whisker hsr for Eb=0.5 eV and Pdiss=5�10−4. The upper curve for a
particular flux is for dwhisker=20 and the lower one for dwhisker=160. The results for three fluxes are shown: 500 ML/s �bottom�, 750 ML/s
�middle�, 1000 ML/s �top�. Fluctuations of the height in time are of the same order for all runs.
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C = � �t

dwhisker + d0
+ 
t tanh
dwhisker

d1
�� ,

where t̃ is a shifted time so that lwhisker=0 at t̃=0:

t̃ = t −
Ct0

C − Vsurf
. �18�

Taking the values for �t and 
t for E=0.5 eV and Pdiss=5
�10−4 �see Table III� both parameters are approximately
proportional to D except for very high fluxes,

lwhisker = � 390

2R + 1
+ 1.3 tanh
2R

d1
� −

Vsurf

D
�Dt̃ , �19�

where we use R=dwhisker /2.
Now we can compare Eqs. �16� and �19�: From the first

term we get approximately Rc=195 �in units of lattice sites�
and second term in Eq. �19� is of the same order as that in
Eq. �16� �it varies between 0 for infinitesimally small R and
1.3 for large R�. It is clear that both equations cannot com-
pletely match because in the theory of Dubrovski� et al. there
are no grooves around the whiskers and the system is in a
steady-state-like condition from the beginning. In our com-
putations we see that the initialization time can be rather
large for small fluxes. Because experiments were analyzed
only post-mortem the transient growth behavior could not be
observed.

In all computations, the temperature was the same all over
the whisker. As long as hwhisker /dwhisker is small this is a good
approximation according to the results of the approach of
Glas and Harmand �19�. If necessary, a temperature as a
function of the whisker height could be easily included into
the CA, and we shall leave this as an interesting topic for
future research.

V. CONCLUSION

Despite the crude approximations, the present LG model
proves capable of reproducing some of the main features
observed in experiments. For instance, semiquantitative in-
formation on the growth rate as a function of the whisker
concentration and the whisker radius can be obtained. Quan-
titative agreement with experimental situations hinges on a
careful fine-tuning of the macroscopic parameters which col-
lect the microscopic chemicophysical details controlling the
whisker growth. In this respect, many developments of the
current LG model can be anticipated.
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